6,701 research outputs found

    Context-Aware Zero-Shot Recognition

    Full text link
    We present a novel problem setting in zero-shot learning, zero-shot object recognition and detection in the context. Contrary to the traditional zero-shot learning methods, which simply infers unseen categories by transferring knowledge from the objects belonging to semantically similar seen categories, we aim to understand the identity of the novel objects in an image surrounded by the known objects using the inter-object relation prior. Specifically, we leverage the visual context and the geometric relationships between all pairs of objects in a single image, and capture the information useful to infer unseen categories. We integrate our context-aware zero-shot learning framework into the traditional zero-shot learning techniques seamlessly using a Conditional Random Field (CRF). The proposed algorithm is evaluated on both zero-shot region classification and zero-shot detection tasks. The results on Visual Genome (VG) dataset show that our model significantly boosts performance with the additional visual context compared to traditional methods

    Small data global regularity for simplified 3-D Ericksen-Leslie's compressible hyperbolic liquid crystal model

    Full text link
    In this article, we consider the Ericksen-Leslie's hyperbolic system for compressible liquid crystal model in three spatial dimensions. Global regularity for small and smooth initial data near equilibrium is proved for the case that the system is a nonlinear coupling of compressible Navier-Stokes equations with wave map to S2\mathbb{S}^2. Our argument is a combination of vector field method and Fourier analysis. The main strategy to prove global regularity relies on an interplay between the control of high order energies and decay estimates, which is based on the idea inspired by the method of space-time resonances. In particular the different behaviors of the decay properties of the density and velocity field for compressible fluids at different frequencies play a key role.Comment: 61 pages; all comments wellcom

    Apolipoprotein M

    Get PDF
    Apolipoprotein M (apoM) is a 26-kDa protein that is mainly associated with high-density lipoprotein (HDL) in human plasma, with a small proportion present in triglyceride-rich lipoproteins (TGRLP) and low-density lipoproteins (LDL). Human apoM gene is located in p21.31 on chromosome 6 (chromosome 17, in mouse). Human apoM cDNA (734 base pairs) encodes 188-amino acid residue-long protein. It belongs to lipocalin protein superfamily. Human tissue expression array study indicates that apoM is only expressed in liver and in kidney and small amounts are found in fetal liver and kidney. In situ apoM mRNA hybridization demonstrates that apoM is exclusively expressed in the hepatocytes and in the tubule epithelial cells in kidney. Expression of apoM could be regulated by platelet activating factor (PAF), transforming growth factors (TGF), insulin-like growth factor (IGF) and leptin in vivo and/or in vitro. It has been demonstrated that apoM expression is dramatically decreased in apoA-I deficient mouse. Hepatocyte nuclear factor-1α (HNF-1α) is an activator of apoM gene promoter. Deficiency of HNF-1α mouse shows lack of apoM expression. Mutations in HNF-1α (MODY3) have reduced serum apoM levels. Expression of apoM is significantly decreased in leptin deficient (ob/ob) mouse or leptin receptor deficient (db/db) mouse. ApoM concentration in plasma is positively correlated to leptin level in obese subjects. These may suggest that apoM is related to the initiation and progression of MODY3 and/or obesity
    • …
    corecore